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Summary

We present a method that combines language model pre-training and fine-tuning with distantly supervised relation extraction, where labels are
noisy, to extract a more diverse set of relational facts from text. We utilize a pre-trained language model providing supporting linguistic and contextual
information to more efficiently guide the relation classification, which we show to be important for recognizing a more diverse set of relations. By
extending the language model to the distantly supervised setting, and fine-tuning it on the NYT10 dataset, we show that it predicts a larger set of
distinct relation types with high confidence. Manual and automated evaluation of our model shows that it achieves a state-of-the-art AUC score of
0.422 on the NYT10 dataset, and performs especially well at higher recall levels.
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