Improving Relation Extraction by Pre-trained Language Representations Christoph Alt*, Marc Hübner*, Leonhard Hennig https://github.com/DFKI-NLP/TRE {firstname.lastname}@dfki.de

Summary

Current state-of-the-art relation extraction methods typically rely on **lexical, syntactic, and semantic features, explicitly computed** in a pre-processing step, that require additional annotated language resources. This severely restricts the applicability and portability and introduces a source of errors. We introduce TRE, a Transformer for Relation Extraction, extending the OpenAI Generative Pre-trained Transformer [Radford et al., 2018]. TRE uses pre-trained deep language representations instead of explicit linguistic features and allows us to learn implicit linguistic features solely from plain text corpora by unsupervised pre-training, before fine-tuning the learned language representations on the relation extraction task. TRE obtains a new state-of-the-art result on the TACRED and SemEval 2010 Task 8 datasets.

Goals

- High performance Relation Extraction
- No task specific architecture
- Limited pre-processing of source corpora
- Limited dependency on domain-specific resources

Challenges

- Entity Masking is still crucial for best performance
- Overfitted language representations
- Hyperparameter tuning?

The Task (Relation Extraction)

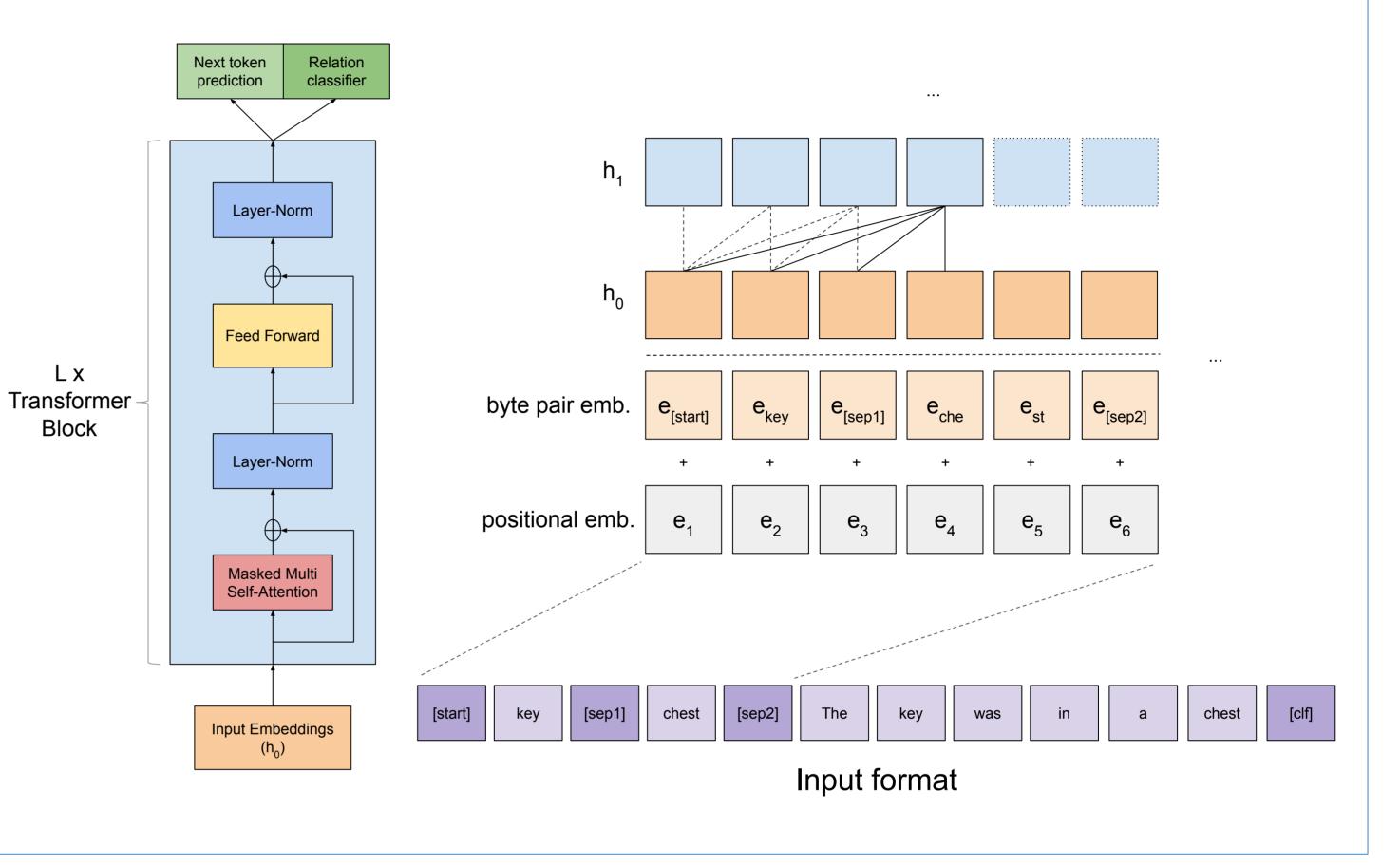
The following are typical inputs to a information extraction system:

<u>Mr. Scheider played the police chief of a resort town menaced by a</u> shark.

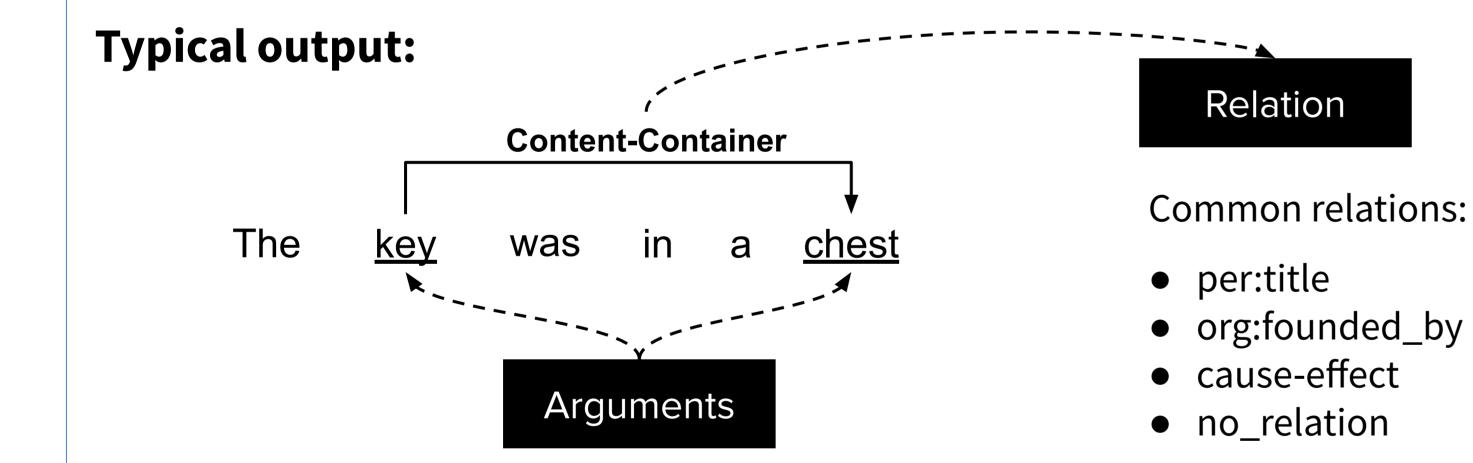
The measure included <u>Aerolineas</u>'s domestic subsidiary, <u>Austral</u>.

TRE Architecture

Fine-tuned Transformer Language Model (OpenAI GPT) on a task-specific input format using multi-task learning with auxiliary loss as regularizer.



The key was in a <u>chest</u>.



Ablation

	Sen	nEval		TACRED		
	None	UNK	None	UNK	NE + GR	
Best model	85.6	76.9	63.3	51.0	68.0	
- w/o pre-trained LM	75.6	68.2	43.3	41.6	64.2	
- w/o pre-trained LM and BPE	55.3	60.9	38.5	38.4	60.8	

Key Findings: • Entity Masking helps for LM representation generalization • Without masking LM pre-training learns more generalizable representations for entities of both datasets

Datasets

Dataset	Relation Types	examples	negative examples		
TACRED	42	106,264	79.5%		
SemEval 2010 Task 8	19	10,717	17.4%		

TACRED relation types mostly focus on named entities, whereas SemEval contains semantic relations between concepts.

Entity Masking on TACRED

None	: The measure included <u>Aerolineas</u> 's domestic subsidiary, <u>Austral</u>
UNK:	The measure included <u><unk></unk></u> 's domestic subsidiary, <u><unk></unk></u>
GR:	The measure included <u></u> 's domestic subsidiary, <u><obj></obj></u>
NE:	The measure included <u><org></org></u> 's domestic subsidiary, <u><org></org></u>

Entity Masking	Precision	Recall	F1
None	69.5	58.1	63.3
UNK	56.9	46.3	51.0
GR	63.8	50.1	56.1
NE	68.8	65.3	67.0
NE + GR	68.8	67.2	68.0

Results

TACRED					SemEval				
System	Р	R	F1	System	Р	R	F1		
LR^{\dagger}	72.0	47.8	57.5	SVM^{\dagger}			82.2		
CNN^{\dagger}	72.1	50.3	59.2	$PA-LSTM^{\dagger}$			82.7		
$\mathrm{Tree}\text{-}\mathrm{LSTM}^{\dagger}$	66.0	59.2	62.4	C - GCN^{\dagger}	_		84.8		
$PA-LSTM^{\dagger}$	65.7	64.5	65.1	DRNN^\dagger	_		86.1		
C - GCN^{\dagger}	69.9	63.3	66.4	BRCNN^{\dagger}	_		86.3		
TRE (ours)	70.1	65.0	67.4	TRE (ours)	88.0	86.2	87.1		

Key Findings:

"None" masking delivers high precision but low recall

- Entity type information helps to generalize
- Additional Grammar masking further boosts performance

† as reported in the original work

German **Research Center** for Artificial Intelligence

Supported through projects DEEPLEE (01IW17001), BBDC2 (01IS18025E), and DAYSTREAM (19F2031A)

Sponsored by:

Federal Ministry of Education and Research