Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit

Abstract

Inseq 1 is a recent toolkit providing an intuitive and optimized interface to conduct feature attribution analyses of generative language models. In this work, we present the latest improvements to the library, including efforts to simplify the attribution of large language models on consumer hardware, additional attribution approaches, and a new client command to detect and attribute context usage in language model generations. We showcase an online demo using Inseq as an attribution backbone for context reliance analysis, and we highlight interesting contextual patterns in language model generations. Ultimately, this release furthers Inseq’s mission of centralizing good interpretability practices and enabling fair and reproducible model evaluations.

Type
Publication
Joint Proceedings of the xAI 2024 Late-breaking Work, Demos and Doctoral Consortium co-located with the 2nd World Conference on eXplainable Artificial Intelligence (xAI 2024)
Nils Feldhus
Nils Feldhus
Senior Researcher